Maksim Sorokin

Ph.D. student in Robotics @ Georgia Tech

https://initmaks.com/
 +1 580 495 9795 @ mksmsrkn@gmail.com
 in linkedin.com/in/initmaks \$\mathbf{O}\$ github.com/initmaks

My research interests lie at an intersection of reinforcement learning and computer vision. In particular, when applied to robotic applications such as navigation and environment interaction/manipulation.

Competences : Python Pytorch Pybullet iGibson OpenCV Numpy C/C++ Tensorflow ROS docker

EDUCATION

2020 - Now	Georgia Institute of Technology Ph.D. in Robotics with focus on Vision-based Deep Reinforcement Learning	(Atlanta, GA)
2017 - 2020	Advised by Dr. Sehoon Ha Georgia Institute of Technology	(Atlanta, GA)
	M.S. in Computer Science, Specialization in Computational Perception and Robotics Advised by Dr. C. Karen Liu	
2013 - 2017	Izmir University of Economics B.S. in Computer Engineering	(Izmir, Turkey)

Experience

Jun 2022 Sep 2021	AI Resident I am currently a Artificial Intelligence PhD Resident at Everyday Robots (formerly Google X Reinforcement Learning) Computer Vision	veryday Robots ().
May 2020 Jan 2019	 Graduate Researcher at Graphics Lab under Dr. C. Karen Liu Worked on object localization and manipulation for agents with egocentric view Developed Vision-based Deep Reinforcement Learning pipeline Published "Learning Human Search Behavior from Egocentric View" paper. Reinforcement Learning Computer Vision Manipulation Navigation 	Georgia Tech
May 2020 Sep 2018	 Head Teaching Assistant Artificial Intelligence class under Dr. Thomas Ploetz & Dr. Thad Starner > Helped organize and lecture the class of 800+ students > Led the team of 16 Teaching Assistants > Responsible for assignments, exams, and course coordination Al Machine Learning Python Numpy jupyter docker 	Georgia Tech

PUBLICATIONS

S IEEE ROBOTICS AND AUTOMATION LETTERS (RA-L) [2022]

Learning to Navigate Sidewalks in Outdoor Environments

Maks Sorokin, Jie Tan, C. Karen Liu, Sehoon Ha

We design a system which enables zero-shot policy transfer to the real-world outdoor environments for sidewalk navigation task. Our approach is evaluated on a quadrupedal robot navigating sidewalks in the real world walking 3.2 kilometers with a limited number of human interventions.

ORDITICS : SCIENCE AND SYSTEMS [2022]

HUMAN MOTION CONTROL OF QUADRUPEDAL ROBOTS USING DEEP RL Sunwoo Kim, Maks Sorokin, Jehee Lee, Sehoon Ha

We propose a novel motion control system that allows a human user to operate various motor tasks seamlessly on a quadrupedal robot. Using our system a user can execute a variety of motor tasks, including standing, sitting, tilting, manipulating, walking, and turning, on simulated and real quadrupeds.

S EUROGRAPHICS [2021]

LEARNING HUMAN SEARCH BEHAVIOR FROM EGOCENTRIC VIEW Maks Sorokin, Wenhao Yu, Sehoon Ha, C, Karen Liu

We train vision-based agent to perform object searching in photorealistic 3D scene. And propose a motion synthesis mechanism for head motion retargeting. Using which we enable object searching behaviour with animated human character (PFNN/NSM).

ICRA [2021]

A Few Shot Adaptation of Visual Navigation Skills to New Observations using Meta-Learning

Qian Luo, Maks Sorokin, Sehoon Ha

We show how vision-based navigation agents can be trained to adapt to new sensor configurations with only three shots of experience. Rapid adaptation is achieved by introducing a bottleneck between perception and control networks, and through the perception component's meta-adaptation.

2021	ML@GT fellowship
	Awarded the fellowship by the Machine Learning Center at Georgia Tech
2020	"Thank a Teacher" @ Georgia Tech
	Recognition for excellence in teaching Artificial Intelligence class
2017	Scientific and Technological Research Council of Turkey
	Finalist of Country-wide Software Development University Competition
2017	Informatics Association of Turkey
	Best University Graduation Project - University Exhibition Visitors Choice
2017	Udacity DIDI - Self-driving Car challenge
	7th in round 1, and 12th in round 2 out of 2000 teams competition

PROJECTS

REAL2SIM IMAGE DOMAIN ADAPTATION [2018]

GITHUB.COM/RAN2CAN

WEBLINK

WEBLINK

replication of sim2real paper experiment

- > Real world to canonical image conversion with 100% synthetic data
- > Substituting original generative network with U-NET "style" transfer

Python Pytorch UNET V-REP Lua Numpy fastai

Fetch Robot Object Picking with GQ-CNN [2018]

Mobile manipulation course project

- > Navigation and object grasping ROS pipeline
- > Using Movelt! & GQ-CNN using Fetch robot in Gazebo simulator

Python Tensorflow OpenCV Gazebo Docker ROS

Learning swing motion using SAC [2018]

Character Animation course project

- > Learning to pull up bar swing motion from scratch
- > Using Soft-Actor Critic Reinforcement Learning method

Python C++ Tensorflow DARTsim

